Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Conserv Biol ; : e14266, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38578127

RESUMEN

Survival of the immobile embryo in response to rising temperature is important to determine a species' vulnerability to climate change. However, the collective effects of 2 key thermal characteristics associated with climate change (i.e., rising average temperature and acute heat events) on embryonic survival remain largely unexplored. We used empirical measurements and niche modeling to investigate how chronic and acute heat stress independently and collectively influence the embryonic survival of lizards across latitudes. We collected and bred lizards from 5 latitudes and incubated their eggs across a range of temperatures to quantify population-specific responses to chronic and acute heat stress. Using an embryonic development model parameterized with measured embryonic heat tolerances, we further identified a collective impact of embryonic chronic and acute heat tolerances on embryonic survival. We also incorporated embryonic chronic and acute heat tolerance in hybrid species distribution models to determine species' range shifts under climate change. Embryos' tolerance of chronic heat (T-chronic) remained consistent across latitudes, whereas their tolerance of acute heat (T-acute) was higher at high latitudes than at low latitudes. Tolerance of acute heat exerted a more pronounced influence than tolerance of chronic heat. In species distribution models, climate change led to the most significant habitat loss for each population and species in its low-latitude distribution. Consequently, habitat for populations across all latitudes will shift toward high latitudes. Our study also highlights the importance of considering embryonic survival under chronic and acute heat stresses to predict species' vulnerability to climate change.


Efectos colectivos del aumento de las temperaturas promedio y los eventos de calor en embriones ovíparos Resumen La supervivencia de los embriones inmóviles en respuesta al incremento de temperatura es importante para determinar la vulnerabilidad de las especies al cambio climático. Sin embargo, los efectos colectivos de dos características térmicas claves asociadas con el cambio climático (i. e., aumento de temperatura promedio y eventos de calor agudo) sobre la supervivencia embrionaria permanecen en gran parte inexplorados. Utilizamos mediciones empíricas y modelos de nicho para investigar cómo el estrés térmico crónico y agudo influye de forma independiente y colectiva en la supervivencia embrionaria de los lagartos en todas las latitudes. Recolectamos y criamos lagartos de cinco latitudes e incubamos sus huevos en un rango de temperaturas para cuantificar las respuestas específicas de la población al estrés por calor crónico y agudo. Posteriormente, mediante un modelo de desarrollo embrionario parametrizado con mediciones de tolerancia embrionaria al calor, identificamos un impacto colectivo de las tolerancias embrionarias al calor agudo y crónico en la supervivencia embrionaria. También incorporamos la tolerancia embrionaria crónica y aguda al calor en modelos de distribución de especies híbridas para determinar los cambios de distribución de las especies bajo el cambio climático. La tolerancia embrionaria al calor crónico (T­crónico) permaneció constante, mientras que la tolerancia al calor agudo (T­agudo) fue mayor en latitudes altas que en latitudes bajas. La tolerancia al calor agudo ejerció una influencia más pronunciada que la tolerancia al calor crónico. En los modelos de distribución de especies, el cambio climático provocó la pérdida de hábitat más significativa para cada población y especie en su distribución de latitudes bajas. En consecuencia, el hábitat para poblaciones en todas las latitudes se desplazará a latitudes altas. Nuestro estudio también resalta la importancia de considerar la supervivencia embrionaria bajo estrés térmico crónico y agudo para predecir la vulnerabilidad de las especies al cambio climático.

2.
Sci Rep ; 14(1): 7213, 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38531933

RESUMEN

The currently available distribution and range maps for the Great Grey Owl (GGOW; Strix nebulosa) are ambiguous, contradictory, imprecise, outdated, often hand-drawn and thus not quantified, not based on data or scientific. In this study, we present a proof of concept with a biological application for technical and biological workflow progress on latest global open access 'Big Data' sharing, Open-source methods of R and geographic information systems (OGIS and QGIS) assessed with six recent multi-evidence citizen-science sightings of the GGOW. This proposed workflow can be applied for quantified inference for any species-habitat model such as typically applied with species distribution models (SDMs). Using Random Forest-an ensemble-type model of Machine Learning following Leo Breiman's approach of inference from predictions-we present a Super SDM for GGOWs in Alaska running on Oracle Cloud Infrastructure (OCI). These Super SDMs were based on best publicly available data (410 occurrences + 1% new assessment sightings) and over 100 environmental GIS habitat predictors ('Big Data'). The compiled global open access data and the associated workflow overcome for the first time the limitations of traditionally used PC and laptops. It breaks new ground and has real-world implications for conservation and land management for GGOW, for Alaska, and for other species worldwide as a 'new' baseline. As this research field remains dynamic, Super SDMs can have limits, are not the ultimate and final statement on species-habitat associations yet, but they summarize all publicly available data and information on a topic in a quantified and testable fashion allowing fine-tuning and improvements as needed. At minimum, they allow for low-cost rapid assessment and a great leap forward to be more ecological and inclusive of all information at-hand. Using GGOWs, here we aim to correct the perception of this species towards a more inclusive, holistic, and scientifically correct assessment of this urban-adapted owl in the Anthropocene, rather than a mysterious wilderness-inhabiting species (aka 'Phantom of the North'). Such a Super SDM was never created for any bird species before and opens new perspectives for impact assessment policy and global sustainability.

3.
PeerJ ; 12: e17029, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38436031

RESUMEN

Anthropogenic global change is precipitating a worldwide biodiversity crisis, with myriad species teetering on the brink of extinction. The Arctic, a fragile ecosystem already on the frontline of global change, bears witness to rapid ecological transformations catalyzed by escalating temperatures. In this context, we explore the ramifications of global change and interspecies competition on two arctic crane species: the critically endangered Siberian crane (Leucogeranus leucogeranus) and the non-threatened sandhill crane (Grus canadensis). How might global climate and landcover changes affect the range dynamics of Siberian cranes and sandhill cranes in the Arctic, potentially leading to increased competition and posing a greater threat to the critically endangered Siberian cranes? To answer these questions, we integrated ensemble species distribution models (SDMs) to predict breeding distributions, considering both abiotic and biotic factors. Our results reveal a profound divergence in how global change impacts these crane species. Siberian cranes are poised to lose a significant portion of their habitats, while sandhill cranes are projected to experience substantial range expansion. Furthermore, we identify a growing overlap in breeding areas, intensifying interspecies competition, which may imperil the Siberian crane. Notably, we found the Anzhu Islands may become a Siberian crane refuge under global change, but competition with Sandhill Cranes underscores the need for enhanced conservation management. Our study underscores the urgency of considering species responses to global changes and interspecies dynamics in risk assessments and conservation management. As anthropogenic pressures continue to mount, such considerations are crucial for the preservation of endangered species in the face of impending global challenges.


Asunto(s)
Efectos Antropogénicos , Ecosistema , Animales , Biodiversidad , Aves , Clima
4.
Sci Data ; 11(1): 243, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38413613

RESUMEN

Trait datasets are increasingly being used in studies investigating eco-evolutionary theory and global conservation initiatives. Reptiles are emerging as a key group for studying these questions because their traits are crucial for understanding the ability of animals to cope with environmental changes and their contributions to ecosystem processes. We collected data from earlier databases, and the primary literature to create an up-to-date dataset of reptilian traits, encompassing 40 traits from 12060 species of reptiles (Archelosauria: Crocodylia and Testudines, Rhynchocephalia, and Squamata: Amphisbaenia, Sauria, and Serpentes). The data were gathered from 1288 sources published between 1820 and 2023. The dataset includes morphological, physiological, behavioral, and life history traits, as well as information on the availability of genetic data, IUCN Red List assessments, and population trends.


Asunto(s)
Ecosistema , Reptiles , Animales , Evolución Biológica , Fenotipo , Reptiles/fisiología
5.
Innovation (Camb) ; 4(3): 100424, 2023 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-37181229

RESUMEN

To meet the challenge of biodiversity loss and reach the targets of the proposed Post-2020 Global Biodiversity Framework, the Chinese government updated the list of national key protected wildlife in 2021 and has been continually expanding the protected areas (PAs). However, the status of protected wildlife in PAs remains unclear. In this study, we conducted a national assessment of the status of protected wildlife and suggested an optimization plan to overcome these shortcomings. From 1988 to 2021, the number of protected species almost doubled, and the area of PAs increased by 2.4 times, covering over 92.8% of the protected species. Nonetheless, 70.8% of the protected species are still not effectively protected by PAs, with some having less than 10% of their habitat included in PAs. Despite the significant addition of amphibians and reptiles to the latest protection list, they are the fewest species and are the least covered by PAs compared with birds and mammals. To fix these gaps, we systematically optimized the current PAs network by adding another 10.0% of China's land area as PAs, which resulted in 37.6% coverage of protected species' habitats in PAs. In addition, 26 priority areas were identified. Our research aimed to identify gaps in current conservation policies and suggest optimization solutions to facilitate wildlife conservation planning in China. In general, updating the list of key protected wildlife species and systematically optimizing PA networks are essential and applicable to other countries facing biodiversity loss.

6.
Nat Commun ; 14(1): 1389, 2023 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-36914628

RESUMEN

Protected Areas (PAs) are the cornerstone of biodiversity conservation. Here, we collated distributional data for >14,000 (~70% of) species of amphibians and reptiles (herpetofauna) to perform a global assessment of the conservation effectiveness of PAs using species distribution models. Our analyses reveal that >91% of herpetofauna species are currently distributed in PAs, and that this proportion will remain unaltered under future climate change. Indeed, loss of species' distributional ranges will be lower inside PAs than outside them. Therefore, the proportion of effectively protected species is predicted to increase. However, over 7.8% of species currently occur outside PAs, and large spatial conservation gaps remain, mainly across tropical and subtropical moist broadleaf forests, and across non-high-income countries. We also predict that more than 300 amphibian and 500 reptile species may go extinct under climate change over the course of the ongoing century. Our study highlights the importance of PAs in providing herpetofauna with refuge from climate change, and suggests ways to optimize PAs to better conserve biodiversity worldwide.


Asunto(s)
Cambio Climático , Ecosistema , Animales , Conservación de los Recursos Naturales , Reptiles , Anfibios , Biodiversidad
7.
Glob Chang Biol ; 29(10): 2669-2680, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36843496

RESUMEN

Ongoing climate change has profoundly affected global biodiversity, but its impacts on populations across elevations remain understudied. Using mechanistic niche models incorporating species traits, we predicted ecophysiological responses (activity times, oxygen consumption and evaporative water loss) for lizard populations at high-elevation (<3600 m asl) and extra-high-elevation (≥3600 m asl) under recent (1970-2000) and future (2081-2100) climates. Compared with their high-elevation counterparts, lizards from extra-high-elevation are predicted to experience a greater increase in activity time and oxygen consumption. By integrating these ecophysiological responses into hybrid species distribution models (HSDMs), we were able to make the following predictions under two warming scenarios (SSP1-2.6, SSP5-8.5). By 2081-2100, we predict that lizards at both high- and extra-high-elevation will shift upslope; lizards at extra-high-elevation will gain more and lose less habitat than will their high-elevation congeners. We therefore advocate the conservation of high-elevation species in the context of climate change, especially for those populations living close to their lower elevational range limits. In addition, by comparing the results from HSDMs and traditional species distribution models, we highlight the importance of considering intraspecific variation and local adaptation in physiological traits along elevational gradients when forecasting species' future distributions under climate change.


Asunto(s)
Cambio Climático , Lagartos , Animales , Lagartos/fisiología , Aclimatación , Adaptación Fisiológica , Ecosistema
8.
Nat Commun ; 14(1): 211, 2023 01 13.
Artículo en Inglés | MEDLINE | ID: mdl-36639376

RESUMEN

The world's warm deserts are predicted to experience disproportionately large temperature increases due to climate change, yet the impacts on global desert biodiversity remain poorly understood. Because species in warm deserts live close to their physiological limits, additional warming may induce local extinctions. Here, we combine climate change projections with biophysical models and species distributions to predict physiological impacts of climate change on desert birds globally. Our results show heterogeneous impacts between and within warm deserts. Moreover, spatial patterns of physiological impacts do not simply mirror air temperature changes. Climate change refugia, defined as warm desert areas with high avian diversity and low predicted physiological impacts, are predicted to persist in varying extents in different desert realms. Only a small proportion (<20%) of refugia fall within existing protected areas. Our analysis highlights the need to increase protection of refugial areas within the world's warm deserts to protect species from climate change.


Asunto(s)
Aves , Cambio Climático , Animales , Aves/fisiología , Biodiversidad , Temperatura , Ecosistema , Clima Desértico
10.
Proc Biol Sci ; 289(1980): 20221074, 2022 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-35946157

RESUMEN

Climate warming has imposed profound impacts on species globally. Understanding the vulnerabilities of species from different latitudinal regions to warming climates is critical for biological conservation. Using five species of Takydromus lizards as a study system, we quantified physiological and life-history responses and geography range change across latitudes under climate warming. Using integrated biophysical models and hybrid species distribution models, we found: (i) thermal safety margin is larger at high latitudes and is predicted to decrease under climate warming for lizards at all latitudes; (ii) climate warming will speed up embryonic development and increase annual activity time of adult lizards, but will exacerbate water loss of adults across all latitudes; and (iii) species across latitudes are predicted to experience habitat contraction under climate warming due to different limitations-tropical and subtropical species are vulnerable due to increased extremely high temperatures, whereas temperate species are vulnerable due to both extremely high temperatures and increased water loss. This study provides a comprehensive understanding of the vulnerability of species from different latitudinal regions to climate warming in ectotherms, and also highlights the importance of integrating environmental factors, behaviour, physiology and life-history responses in predicting the risk of species to climate warming.


Asunto(s)
Lagartos , Animales , Cambio Climático , Ecosistema , Respuesta al Choque Térmico , Lagartos/fisiología , Temperatura , Clima Tropical , Agua
11.
Conserv Biol ; 36(6): e13964, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35674098

RESUMEN

In China, as elsewhere, amphibians are highly endangered. Anthropogenic environmental change has affected the distribution and population dynamics of species, and species distributions at a broad scale are strongly driven by climate and species' ability to disperse. Yet, current knowledge remains limited on how widespread human activity affects the distribution patterns of amphibians in China and whether this effect extends beyond climate. We compiled a relatively comprehensive database on the distribution of 196 amphibian species in China from the literature, public databases, and field data. We obtained 25,826 records on almost 50% of known species in China. To test how environmental factors and human activities influence the current distribution of amphibians (1960-1990), we used range filling, which is species realized ranges relative to their potential climate distribution. We used all species occurrence records to represent realized range and niche models to predict potential distribution range. To reduce uncertainty, we used 3 regression methods (beta regression, generalized boosted regression models, and random forest) to test the associations of species range filling with human activity, climate, topography, and range size. The results of the 3 approaches were consistent. At the species level, mean annual precipitation (climate) had the most effect on spatial distribution pattern of amphibians in China, followed by range size. Human activity ranked last. At the spatial level, mean annual precipitation remained the most important factor. Regions in southeastern of China that are currently moist supported the highest amphibian diversity, but were predicted to experience a decline in precipitation under climate change scenarios. Consequently, the distributions of amphibians will likely shift to the northwest in the future, which could affect future conservation efforts.


En China, como en todos lados, los anfibios están gravemente en peligro. El cambio ambiental antropogénico ha afectado la distribución y dinámica poblacional de especies, y la distribución de especies a gran escala están muy influidas por el clima y la habilidad de dispersión de las especies. Sin embargo, el conocimiento actual sigue siendo limitado sobre cómo la actividad humana generalizada afecta a los patrones de distribución de anfibios en China y si este efecto se extiende más allá del clima. A partir de literatura, bases de datos públicas y datos de campo, integramos una base datos relativamente completa sobre la distribución de 196 especies de anfibios en China. Obtuvimos 25,826 registros de casi 50% de las especies conocidas en China. Para probar cómo los factores ambientales y las actividades humanas influyen en la distribución actual de anfibios (1960-1990), utilizamos la ocupación de rango, que contrasta los rangos de distribución observada de las especies en relación con su distribución climática potencial. Utilizamos los registros de ocurrencia de todas las especies para representar el rango observado y modelos de nicho para predecir el rango de distribución potencial. Para reducir la incertidumbre, utilizamos 3 métodos de regresión (regresión beta, modelos de regresión acelerada generalizada y bosque aleatorio) para probar las asociaciones de la ocupación de rango de especies con la actividad humana, clima, topografía y extensión de rango. Los resultados de los tres métodos fueron consistentes. A nivel de especie, la precipitación media anual (clima) tuvo el mayor efecto sobre el patrón de distribución de anfibios en China, seguida por la extensión del rango. La actividad humana ocupó el último lugar. A nivel espacial, la precipitación media anual siguió como el factor más importante. Las regiones en el sureste de China que aun son húmedas sostuvieron la mayor diversidad de anfibios, pero se pronosticó que la precipitación declinará bajo escenarios de cambio climático. Consecuentemente, la distribución de anfibios muy probablemente cambiará hacia el noreste, lo cual podría afectar esfuerzos futuros de conservación.


Asunto(s)
Anfibios , Conservación de los Recursos Naturales , Animales , Humanos , Cambio Climático , Actividades Humanas , China , Ecosistema
12.
Integr Zool ; 17(5): 715-730, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35060680

RESUMEN

Tens of thousands of demoiselle cranes' crossing the Himalayas to the Indian subcontinent have been reported for decades, but their exact spring migration route remained a mystery until our previous study found they made a detour in spring along the western edge of the Himalayas and crossed the Mongolian Plateau to their breeding areas based on satellite telemetry of 3 birds. To corroborate the loop migration pattern and explore whether demoiselle crane's loop migration route is shaped by time- and energy-minimization strategies in spring and autumn and how the temporal and spatial variation of environmental conditions contribute to crane's selection of migration routes, we tracked 11 satellite-tagged demoiselle cranes from their breeding area in China and Russia, simulated 2 pseudo migration routes, and then compared the environmental conditions, time, and energy cost between true and pseudo routes in the same season. Results show that demoiselles' spring migration obeyed time-minimization hypothesis, avoiding the colder Qinghai-Tibet Plateau, benefited by abundant food and higher thermal and orographic uplift along the route; autumn migration follows energy-minimization hypothesis with the shorter route. Our research will contribute to uncover the mechanical reasons why demoiselle crane avoids crossing the giant barrier of the Himalayas in spring, and shapes a loop migration route.


Asunto(s)
Migración Animal , Aves , Animales , China , Estaciones del Año , Telemetría
13.
Mol Biol Evol ; 39(1)2022 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-34919713

RESUMEN

The purging of deleterious alleles has been hypothesized to mitigate inbreeding depression, but its effectiveness in endangered species remains debatable. To understand how deleterious alleles are purged during population contractions, we analyzed genomes of the endangered Chinese crocodile lizard (Shinisaurus crocodilurus), which is the only surviving species of its family and currently isolated into small populations. Population genomic analyses revealed four genetically distinct conservation units and sharp declines in both effective population size and genetic diversity. By comparing the relative genetic load across populations and conducting genomic simulations, we discovered that seriously deleterious alleles were effectively purged during population contractions in this relict species, although inbreeding generally enhanced the genetic burden. However, despite with the initial purging, our simulations also predicted that seriously deleterious alleles will gradually accumulate under prolonged bottlenecking. Therefore, we emphasize the importance of maintaining a minimum population capacity and increasing the functional genetic diversity in conservation efforts to preserve populations of the crocodile lizard and other endangered species.


Asunto(s)
Lagartos , Alelos , Animales , Especies en Peligro de Extinción , Variación Genética , Endogamia , Lagartos/genética , Densidad de Población
14.
Ying Yong Sheng Tai Xue Bao ; 32(9): 3127-3135, 2021 Sep.
Artículo en Chino | MEDLINE | ID: mdl-34658197

RESUMEN

Climate change may lead to biodiversity loss and species extinction. Understanding the impacts of climate change on the distribution pattern of endangered species is of great value to the identification of priority reserves and the formulation of relevant conservation strategies. Based on the distribution data of Marco Polo sheep (Ovis ammon polii) obtained from the field survey in Taxkorgan Nature Reserve (TNR) in Xinjiang during 2017-2018, the maximum entropy (MaxEnt) model was used to predict the distribution pattern of its suitable habitat under climate change. The results showed that the suitable habitat of Marco Polo sheep was mainly distributed in the northwest of the TNR, with temperature as the key factor affecting its suitable habitat distribution. Under the medium and high emission concentration (RCP4.5 and RCP8.5), the suitable habitat area of Marco Polo sheep would decrease in the next two periods (2050s and 2070s), with the loss rate of suitable habitat being as high as 40.5%. The loss of suitable habitat was mainly located in the low-altitude area, while the area of suitable habitat increased correspondingly in the high-altitude area. The area of suitable habitat from low elevation to high elevation increased with the increases of greenhouse gas emission concentration. According to the results of centroid transfer, the suitable habitat was mainly moved to the west, namely Tajikistan, the main distribution country of Marco Polo sheep.


Asunto(s)
Cambio Climático , Ecosistema , Animales , Biodiversidad , China , Especies en Peligro de Extinción , Ovinos
15.
Biol Lett ; 17(3): 20200873, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33726564

RESUMEN

Montane reptiles are predicted to move to higher elevations in response to climate warming. However, whether upwards-shifting reptiles will be physiologically constrained by hypoxia at higher elevations remains unknown. We investigated the effects of hypoxic conditions on preferred body temperatures (Tpref) and thermal tolerance capacity of a montane lizard (Phrynocephalus vlangalii) from two populations on the Qinghai-Tibet Plateau. Lizards from 2600 m a.s.l. were exposed to O2 levels mimicking those at 2600 m (control) and 3600 m (hypoxia treatment). Lizards from 3600 m a.s.l. were exposed to O2 levels mimicking those at 3600 m (control) and 4600 m (hypoxia treatment). The Tpref did not differ between the control and hypoxia treatments in lizards from 2600 m. However, lizards from 3600 m selected lower body temperatures when exposed to the hypoxia treatment mimicking the O2 level at 4600 m. Additionally, the hypoxia treatment induced lower critical thermal minimum (CTmin) in lizards from both populations, but did not affect the critical thermal maximum (CTmax) in either population. Our results imply that upwards-shifting reptiles may be constrained by hypoxia if a decrease in Tpref reduces thermally dependent fitness traits, despite no observed effect on their heat tolerance.


Asunto(s)
Lagartos , Aclimatación , Animales , Regulación de la Temperatura Corporal , Hipoxia , Temperatura , Tibet
16.
Sci Rep ; 10(1): 17673, 2020 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-33077778

RESUMEN

Nature reserves play an extraordinarily important role in conserving animal populations and their habitats. However, landscape change and unreasonable zoning designations often render these protected areas inadequate. Therefore, regular evaluation of the efficacy of protected lands is critical for maintaining and improving management strategies. Using species distribution models and GAP analysis, we assessed the changes in suitable habitat for the Brown Eared-pheasant (Crossoptilon mantchuricum) in two Chinese nature reserves between 1995 and 2013. Our results showed that the habitat suitability of Brown Eared-pheasant has changed dramatically during this period, and fragmentation analyses showed an increase in concentration area and decrease in patch area. In particular, our findings show that the national nature reserves need to adjust their ranges to ensure the conservation of this flagship species. Our study further provides a new viewpoint for evaluating the efficacy of protected lands, particularly in highly urbanized regions where conservation goals must be balanced with changing landscapes.


Asunto(s)
Conservación de los Recursos Naturales , Especies en Peligro de Extinción , Galliformes , Animales , China , Conservación de los Recursos Naturales/métodos , Urbanización
17.
PeerJ ; 8: e9715, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32879798

RESUMEN

BACKGROUND: The black-necked crane (Grus nigricollis) is a vulnerable species and the only species that lives in the plateau. Five migration routes of different populations have been identified, but for cranes wintering in Nyingchi Prefecture, Tibet, the migration route and breeding/summering area are still unknown. The aim of this study was to investigate the spatio-temporal migration patterns of black-necked cranes in this area and to identify important areas for conservation. METHODS: In 2016, we fitted seven black-necked cranes in Nyingchi with GPS-GSM satellite transmitters to record their migration routes. We used ArcGIS 10.2 to visualize important stopover sites and the 'ggplot' function in R to analyze the migration patterns. RESULTS: From March 2016 to May 2019, we recorded nine spring migration and four autumn migration tracks from five individuals. Four individuals spent the breeding/summering season in Qinghai Lake, while the other spent the breeding/summering season in the Jinzihai Wetland of Dulan County, Qinghai Province. Detailed spatio-temporal information showed that the spring migration lasted 8.7 ± 4.6 days and covered 1,182.5 ± 90.4 km, while the autumn migration lasted 30 ± 10.6 days and covered 1,455.7 ± 138 km. Basom Lake and the Shazhuyu River were the most important stopover sites during the spring and autumn migrations, respectively. The cranes spent 4.4 ± 3.7 days in Basom Lake and 26.3 ± 10.7 days in the Shazhuyu River. The black-necked cranes mainly migrated during the daytime (>85 % of the fly points), and 81 % (17/21) of all stopover and roosting sites were in the valley or at lakeside swamps. Only 17.7% (516 / 2,914) of the data points for stopover and roosting sites were in protected areas. MAIN CONCLUSIONS: Our study revealed the breeding/summering areas and migration routes of the black-necked cranes wintering in Nyingchi. These results contribute to a better understanding of the annual spatio-temporal migration patterns and the development of conservation plans for this vulnerable species.

18.
MethodsX ; 6: 2281-2292, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31667128

RESUMEN

Random forests (RF) is a powerful species distribution model (SDM) algorithm. This ensemble model by default can produce categorical and numerical species distribution maps based on its classification tree (CT) and regression tree (RT) algorithms, respectively. The CT algorithm can also produce numerical predictions (class probability). Here, we present a detailed procedure involving the use of the CT and RT algorithms using the RF method with presence-only data to model the distribution of species. CT and RT are used to generate numerical prediction maps, and then numerical predictions are converted to binary predictions through objective threshold-setting methods. We also applied simple methods to deal with collinearity of predictor variables and spatial autocorrelation of species occurrence data. A geographically stratified sampling method was employed for generating pseudo-absences. The detailed procedural framework is meant to be a generic method to be applied to virtually any SDM prediction question using presence-only data. •How to use RF as a standard method for generic species distributions with presence-only data•How to choose RF (CT or RT) methods for the distribution modeling of species•A general and detailed procedure for any SDM prediction question.

19.
PeerJ ; 7: e7545, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31531270

RESUMEN

AIM: Historically, the distribution of Sandhill Cranes included much of North America and extending in summer into northeast Russia. In recent years, observations of sandhill cranes in Asia during the non-breeding period have been frequently reported. However, the distribution and abundance of sandhill cranes during the non-breeding period in Asia have rarely been summarized and studied. Our study aimed to analyze the status of sandhill cranes that have spread south into East Asia during the non-breeding period and to assess the possible impacts of their potential spread. METHODS: Based on opportunistic data collected in the field and occurrence data collected online over the past half century, we used Geographic Information System to visualize the spatial distribution changes and regression analysis to analyze and visualize the changes in the amount of individuals over time. RESULTS: In the last 50 years, the distribution of sandhill cranes during the non-breeding season in Asia spanned 31 degrees in longitude to the west and 15 degrees in latitude to the south. Their distribution in Asia has expanded to 17 provinces and municipalities in China, Japan and South Korea. The amount of cranes in the non-breeding period in Asia increased significantly from 1963 to 2017. According to the historical records in East Asia, sandhill cranes were mixed with five other species of crane groups. MAIN CONCLUSIONS: These results indicate that the range and amount of sandhill cranes have expanded. Sandhill cranes were mixed with five other crane species, which indicate their adaptability to a range of habitat types and food resources. The implications of these trends in sandhill cranes in East Asia for this and other crane species warrants further research.

20.
Glob Chang Biol ; 24(6): 2403-2415, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29284201

RESUMEN

Climate change threatens global wheat production and food security, including the wheat industry in Australia. Many studies have examined the impacts of changes in local climate on wheat yield per hectare, but there has been no assessment of changes in land area available for production due to changing climate. It is also unclear how total wheat production would change under future climate when autonomous adaptation options are adopted. We applied species distribution models to investigate future changes in areas climatically suitable for growing wheat in Australia. A crop model was used to assess wheat yield per hectare in these areas. Our results show that there is an overall tendency for a decrease in the areas suitable for growing wheat and a decline in the yield of the northeast Australian wheat belt. This results in reduced national wheat production although future climate change may benefit South Australia and Victoria. These projected outcomes infer that similar wheat-growing regions of the globe might also experience decreases in wheat production. Some cropping adaptation measures increase wheat yield per hectare and provide significant mitigation of the negative effects of climate change on national wheat production by 2041-2060. However, any positive effects will be insufficient to prevent a likely decline in production under a high CO2 emission scenario by 2081-2100 due to increasing losses in suitable wheat-growing areas. Therefore, additional adaptation strategies along with investment in wheat production are needed to maintain Australian agricultural production and enhance global food security. This scenario analysis provides a foundation towards understanding changes in Australia's wheat cropping systems, which will assist in developing adaptation strategies to mitigate climate change impacts on global wheat production.


Asunto(s)
Cambio Climático , Triticum/fisiología , Aclimatación , Agricultura/métodos , Australia , Abastecimiento de Alimentos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...